Temporal and spatio-temporal aggregations over data streams using multiple time granularities

نویسندگان

  • Donghui Zhang
  • Dimitrios Gunopulos
  • Vassilis J. Tsotras
  • Bernhard Seeger
چکیده

Temporal and spatio-temporal aggregations are important but costly operations for applications that maintain time-evolving data (data warehouses, temporal databases, etc.). In this paper we examine the problem of computing such aggregates over data streams. The aggregates are maintained using multiple levels of temporal granularities: older data is aggregated using coarser granularities while more recent data is aggregated with finer detail. We present specialized indexing schemes for dynamically and progressively maintaining temporal and spatio-temporal aggregates. Moreover, these schemes can be parameterized. The levels of granularity as well as their corresponding index sizes (or validity lengths) can be dynamically adjusted. This provides a useful trade-off between aggregation detail and storage space. Analytical and experimental results show the efficiency of the proposed structures. We first address the temporal aggregation problem. A general framework of aggregating at multiple time granularities is then proposed. Finally we show how to utilize this framework to solve the range temporal and spatio-temporal aggregation problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal Aggregation over Data Streams Using Multiple Granularities

Temporal aggregation is an important but costly operation for applications that maintain time-evolving data (data warehouses, temporal databases, etc.). In this paper we examine the problem of computing temporal aggregates over data streams. Such aggregates are maintained using multiple levels of temporal granularities: older data is aggregated using coarser granularities while more recent data...

متن کامل

Multi - granular spatio - temporal object models : concepts andresearch

The capability of representing spatio-temporal objects is fundamental when analysing and monitoring the changes in the spatial configuration of a geographical area over a period of time. An important requirement when managing spatio-temporal objects is the support for multiple granularities. In this paper we discuss how the modelling constructs of object data models can be extended for represen...

متن کامل

Mining periodic patterns in spatio-temporal sequences at different time granularities

With the advancement of technology, it is now easy to collect the location information of mobile users over time. Spatio-temporal data mining techniques were proposed in the literature for the extraction of patterns from spatio-temporal data. However, current techniques can only extract patterns of the finest time granularity, and therefore overlooks potential patterns available at coarser time...

متن کامل

Spatio-temporal analysis of the covid-19 impacts on the using Chicago urban shared bicycles by tensor-based approach

 Cycling is a phenomenon in urban transportation that has the ability to allocate a specific location at any moment in time. Accordingly, spatial analysis of bicycle trips can be accompanied by temporal analysis. The use of a GIS environment is commonly recommended to display the extent of the phenomenon's spatial changes. However, in order to apply and display changes over time, it will requir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Syst.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2003